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Abstract

It is known that the diffusion equation used to model transport in a large variety
of chromatographic techniques has an infinite speed of signal propagation, i.e., if
c(x,t) is the concentration at time ¢, then c(x,£) > 0 for any ¢ > 0. We generalize
and solve the telegraph equation, which is known to have a finite speed of signal
propagation, to allow for asymmetric convection, as is appropriate for the theory
of chromatographic processes. We derive the telegraph equation from a continuous
time random walk picture and examine two sources of convection, an asymmetry
in sojourn times in states in which diffusing particles move in one direction or the
other, and a corresponding asymmetry in the velocities.

1. INTRODUCTION
Many mathematical analyses of the kinetics of processes related to chro-
matography (e.g., chromatography, electrophoresis, or centrifugation) in
a homogeneous medium are based on a one-dimensional diffusion equation
with a bias term exemplified by ()

e _ i e
at ax? ox

(1)

In this equation c(x, ) is the concentration of the assumed single component
atx at time ¢, D is a diffusion constant, and the constant v, which represents
the influence of the driving field, has the dimensions of velocity. It is well
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known that such an equation has an infinite propagation velocity, that is,
c(x,t) > 0 for any t > 0 (2). In consequence, the solution to Eq. (1) can
be regarded as being accurate only in the neighborhood of the peak
x, = vt. One way to derive a diffusion equation without the limitation
implied by the infinite propagation velocity is to replace Eq. (1) by the so-
called telegrapher’s equation

2 2
9_2‘ l QE — u2 _a_(; (2)
at T at ax
where T is a constant with the dimensions of time and « is a constant with
the dimensions of velocity. This equation, however, corresponds to Eq.
(1) with the parameter v set equal to 0, i.e., to a diffusion equation in the
absence of a biasing field. This modified diffusion equation is known to
have the property that the speed of propagation is finite rather than infinite
(2, 3). However, such bias is an inherent part of chromatographic pro-
cesses, corresponding to the effect of the field that drives the process. In
this article we propose to examine a generalization of Eq. (2) which takes
into account the bias while still retaining the advantage of predicting a
finite propagation velocity. Such processes have apparently not been dis-
cussed in the literature. The analysis will be based on random walks with
two states (4), which is the basis of a recent generalization of the notion
of the persistent random walk (5).

2. ANALYSIS

For simplicity we restrict our discussion to the one-dimensional case
which is the one of major interest in applications to chromatographic pro-
cesses. The basic idea defining the generalized diffusion process is that it
can be in one of two states, depending on whether it is moving in the
positive or negative x directions. Thus, the process consists of an alternating
sequence of times during which the random walk moves in one of the two
directions. The time spent in any single sojourn (i.e., the time spent moving
in one or the other direction after a reversal and before the following
reversal) is assumed to be a random variable characterized by a probability
which we denote by ¢, (¢) and b_(¢), respectively, and

v.() = f b.(dr, V(1) = fnu-(f)dT 3)

Let us assume that the initial condition for the diffusion process is
¢(x,0) = 3(x) and that the diffusion process takes place in an infinite
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medium. Further, let f,(x,¢) [f_(x,¢)] be the concentration at x on the
assumption that the particle has moved in the positive [negative] x direction
for a time ¢. We will also need the functions

hi(x,t) = f.0600.(0), H,(x1) = f.(x,)¥ (1) 4)

similar definitions holding for motion in the negative x directions.

Since our model is one in which there are two distinguishable states, in
our model we define c.(x,f) as the concentration at x at time ¢ when the
diffusing particle is moving in the positive x direction and c_(x,¢) for motion
in the negative x direction. Because one cannot operationally distinguish
between the two concentrations, we define the observable concentration
at x at time ¢ as

c(x,t) = c(x,t) + c_(x,1) %)

We will derive a partial differential equation for c(x,t) that incorporates
bias and therefore constitutes a generalization of Eq. (2).

There are two ways in which asymmetry can enter the theory, the first
being through a difference between the two functions f,(x,¢) and f_(x,?),
i.e., fi(x,1) # f_(—x,t), and the second is through the presumption that
U, (£) # P_(¢). It is interesting to note that something very similar to these
two possibilities occur in bacterial motion (6). In order to derive a partial
differential equation for c(x,¢) valid for all ¢ > 0, we will make the specific
assumption that

folet) =8x —v.1), b)) = T%CXP (—TL) (6)

with f (x,¢) and {_(¢) defined similarly in terms of v_ and T_. That is to
say, motion in either direction is ballistic, and the sole source of random
behavior comes from the sojourn times in the two states. An argument
based on the central limit theorem suggests that provided that

f 2f(x, dx, fo " (t)dt < 7

the Gaussian concentration profile calculated from the diffusion equation
will be valid at long times but not necessarily in the transient regime.
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Let us denote the Fourier-Laplace transform of a generic function g(x,t)
by g(w,s) so that

g(w.5) = f eiordy fo " e-sig(x, )dt ®)

It has been shown that the expression for é(w,s) can be written (5):

i+ ﬁ—(w,S)]H+(m,s) + 1+ fl+(w,s)]H_(m,s)
21 = A, (@,5)h_(,5)] ©)

é(w,s) =

With the simple choices for the relevant functions given in Eq. (6), we can
evaluate all of the functions appearing in this last equation, thereby finding

Eos) = 25T. T_ + AT, + T.) — ioT, T_(v, + v_)
’ AT, T + s(T, + T.) — 0?v,v_T,T_
— o, T, + v-T.) — iwsT . T_(vy + v.)}

s+ 2\ — ioV
52 + 2\ — 0, v. — 2iop — 2iesV (10)

in which we have used the notation

1,1 T AE T
2)\-T++T_, V=" Zu—(T_+T+) (11)

For simplicity let us consider the case in whichv, = —v_ = vorV = (,
so that the velocities in either directions are equal and any bias in the
motion results from a tendency of particles to move for longer periods in
the positive rather than the negative direction. We can derive a partial
differential equation for c(x,¢) from the transform in Eq. (10) by using a
method discussed in Ref. 5. The result of this calculation is

d%c dc 9% ac
LA N AL T 12
or ot e Moax (12)

When T, = T_, this reduces to the telegrapher’s equation whose form is
shown in Eq. (2), since equality of the mean residence times is equivalent
to setting p = 0. Thus, in this special case the bias simply adds a term
proportional to dc/dx to the right-hand side, just as one does for the
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diffusion equation. Later we show that the case in which v, # v_ can be
reduced to the same form as Eq. (12) so that we are, in reality, finding a
solution for the more general case even though a restriction applies on the
present analysis.

Equation (12) is always reducible to an unbiased telegrapher’s equation
by choosing a new dependent variable I'(x,t) in place of c(x,t) by using
the transformation

c(x,t) = T'(x,t) exp [—vﬂzx - %(\/TZ - \/%) t] (13)

The function I'(x,t) therefore satisfies

T 14T 3T
—_— —— = 2
2 TTa U (14)

in which the parameter T" is defined by

vT,T.
T = (15)
2
Since c(x,¢) will be assumed to obey the initial conditions
ac
c(x,0) = cd(x), — (16)
at =0

the function I'(x,f) must be found from the solution to Eq. (14) subject to
the same set of initial conditions, i.e., ['(x,0) = ¢,8(x) and aI'/o1|,_, = 0.
The simplest way to solve Eq. (14) is to once again take its Fourier-Laplace
transform, which can be expressed as

C 1 1
f'((.o,s) = v—g (s + F) _7_.5‘- an
Ot e

Let T(x,5) denote the Laplace transform of I'(x,t), or correspondingly the
inverse Fourier transform of Eq. (17). One readily finds this transform to
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be

fGs) = L exp [—? s + %] (19)

which is found to equal (7)

f(z) = exp ( ZT) I, [ 2v1T' v — xz:l H (t - L:—') (20)

in which Iy(x) is a Bessel function of imaginary argument, and H(x) is the
Heaviside step function, i.e., H(x) = O whenx < 0, = 1 whenx > 0 and
H(0) = 1/2. The combination of Egs. (18)-(20) shows that I'(x,) can be
represented in terms of f(t) as

Lk = 5 T, <f(¢) s (’))

_H 4 _t
2vT’ (H(t ’ 1+ Tdt exp T I

1 g (_; M
x[sz, vt x]+exp 2T 8\t -1

t>0 (21)

where 8(x) is a Dirac delta function. The term containing the delta function
gives the contribution from the ballistic motion of those particles that have
always moved in the same direction. The delta function contribute to I'(x,?)
disappears rapidly compared to the contribution from the first set of terms.
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Because of the Heaviside step function in Eq. (21), it is evident that c(x,¢)
must vanish for all x that satisfy x2 > (vt)?. This is to be contrasted to the
solution of the diffusion equation which is nonnegative for all ¢ > 0. In
Fig. 1 we show some typical concentration profiles calculated from Eq.
(13), omitting the delta function term. The increasing asymmetry of these
concentration profiles as the time increases is evident from the figure, as
well the sharp cutoffs at the endpoints x = *vt. We have not included the
delta function peaks at the endpoints.

At sufficiently long times c(x,¢) will indeed approach the shifted Gaussian
form predicted by the solution to a diffusion equation. This is evident from
the behavior of é(w,s) in the limit s—0 where the term proportional to s2
in the denominator is negligible in comparison to s and the term in s in

N
.
x
A
(]
/'/ \\\\
/' /’_‘\\
AT TN
/,f/ E\\
s I
/ |
0
X

F1G. 1. Curves of the concentration profile ¢(x,¢) plotted from Eq. (13) for the values¢, = 1,

v=1,T, =8, T. = 2 for increasing values of time: (—) ¢t = 1; (---) t = 3; (~--)

t = 5. The delta functions at the endpoints are not included in the figure. At very short times

the concentration profiles differ considerably from the shifted Gaussian expected on the basis
of a biased diffusion equation.
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the numerator can be neglected with respect to 2\. In this regime we find

2)\C0
2A8 + 2ipw + viw?

&(ws8) = 22)

whose inverse is readily found by first inverting the Laplace transform
followed by an inversion of the Fourier transform. The result is

c A A put g
c(x,1) z;" 57 €% [—m <x + T) ] (23)

which is the desired Gaussian. One way of assessing the time range over
which one must correct the diffusion approximation is to examine the time-
dependence of the average displacement at time ¢, which is defined by

(x(t))sf:x%’)dx =Ll

¢y 0w (24)

w=0

When the peak is a Gaussian, as would be found for a diffusion model,
(x(2)) is proportional to ¢ for all values of the time, as one indeed finds
from the approximate expression in Eq. (23). On returning to Eq. (10)
and calculating the derivative indicated in Eq. (24), one finds, by a Taub-
erian argument for Laplace transforms (8), that the first two terms in the
expansion of the long time behavior of (x(¢)) are

() = 5 (r - %) @5)

which suggests that the time scale for which the diffusion approximation
is useful is specified by ¢ > A~! or

1 1\¢
(T_+ + i,—;) §> 1 (26)

To this point we have examined the situation in which the velocities are
equal and opposite for the two states but the average sojourn times are
unequal. When the velocities as well as the average residence times are
also allowed to differ, we get a slightly more complicated form from é(w,s)
as indicated by the presence of a term proportional to ws in the denominator
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of Eq. (10). This transform is also equivalent to a partial differential equa-
tion for c(x,?) which is

62 2
—‘2"+2>\—+2V—C=uﬂ—2uE 27)
ot oxot ax? ax

where we have set 7 = —uv,v_. This equation can be reduced in form to
the earlier shifted telegrapher’s equation in Eq. (14) by eliminating the
mixed derivative through the introduction of a new running coordinate, &,
defined as

E=x-—-Vt (28)
which transforms Eq. (27) into

d% ac
— + 2A — =V + 7 - 2(p — -

ar?
. — v - @ —v) (TL - L) 32 29)

This equation reduces to the earlier shifted telegrapher’s equation in Eq.
(12) when v, is set equal to —v_. Since whent = 0, £ = x, it follows that
Eq. (29) is to be solved subject to the initial conditions

c(§,0) = cd(8), 3C(§,f)faflt=o =0 (30)

Our analysis of Eq. (12) can be repeated with the variable x in that equation
replaced by £ in Eq. (29). We can conclude from our earlier analysis that
the concentration profiles have compact support, being identically equal
to zero for £ > (vt)’>. A second conclusion that results from our earlier
analysis is that the concentration profile c(£,¢) is asymptotically a Gaussian
centered at the moving point x = V¢. In the class of models represented
by the assumptions in Eq. (6), the simpler diffusion approach yields sat-
isfactory results in the neighborhood of the peak but does not reproduce
the behavior in the tails very well.

A natural generalization of all our analysis allows for more general
forms of the functions 4, (x,¢) and A_(x,t) than those given in Eq. (6). We
mention some of the features expected in such models, without giving
any details of the analysis. When the two moments [5dt[.x*h(x,t)dx and
I .dx [5th(x,t)de are finite, the asymptotic concentration profile will be a
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Gaussian, as one finds from an argument based on the analysis of Eq. (9)
in the limits s,w—0. In such cases the generalized diffusion equation may
become too complicated to form a useful starting point for any analysis.
For example, if one changes the assumption of ballistic motion to biased
diffusion so that the f(x,¢) in Eq. (6) are replaced by

f+(x,t) = (4nDt)""2 exp [~ (x — vt)*/(4Dt)]
f-(x,t) = (4wDt)" V2 exp [—(x + vt)*/(4D1)]

€2y

the sojourn time densities remaining of negative exponential form as in
Eq. (6) with T, = T_, it is possible to derive a generalized diffusion
equation of the form

¢ 2 dc D\ 9% ¥c , ¥
( ) axt T 2b ox’at b ox* (32)

However, the analysis of such equations is obviously quite complicated. It
is clear that since the expressions for f.(x,?) and f_(x,¢) given in Eq. (31)
allow for an infinite speed of signal propagation, solutions to Eq. (32) will
have this property as well. Thus we can attribute the fact that the solution
to Eq. (12) has compact support to the assumption of ballistic motion
contained in Eq. (6).

As a final comment, we note that if either of the moments
[odtf? .x*h(x,t)dx or [~.dx[§th(x,t)dt is infinite, one can expect that the
peaks in the concentration profile will show enhanced asymmetry and will
not approach a Gaussian shape asymptotically, much as is suggested in
Refs. 9 and 10.
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