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Transport Equations in Chromatography with a Finite 
Speed of Signal Propagation 

JAUME MASOLIVER 
DEPARTMENT DE FISICA FONAMENTAL 
UNIVERSITAT DE BARCELONA 
DIAGONAL 647, 08028 BARCELONA, SPAIN 

GEORGE H. WEISS 
NATIONAL INSTITUTES OF HEALTH 
BETHESDA, MARYLAND 20892 

Abstract 
It is known that the diffusion equation used to model transport in a large variety 

of chromatographic techniques has an infinite speed of signal propagation, i.e., if 
c(x , t )  is the concentration at time t, then c(x,t) > 0 for any t > 0. We generalize 
and solve the telegraph equation, which is known to have a finite speed of signal 
propagation, to allow for asymmetric convection, as is appropriate for the theory 
of chromatographic processes. We derive the telegraph equation from a continuous 
time random walk picture and examine two sources of convection, an asymmetry 
in sojourn times in states in which diffusing particles move in one direction or the 
other, and a corresponding asymmetry in the velocities. 

1. INTRODUCTION 
Many mathematical analyses of the kinetics of processes related to chro- 

matography (e.g., chromatography, electrophoresis, or centrifugation) in 
a homogeneous medium are based on a one-dimensional diffusion equation 
with a bias term exemplified by (I) 

In this equation c(x,t) is the concentration of the assumed single component 
at x at time t, D is a diffusion constant, and the constant u ,  which represents 
the influence of the driving field, has the dimensions of velocity. It is well 
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known that such an equation has an infinite propagation velocity, that is, 
c(x, t )  > 0 for any t > 0 (2 ) .  In consequence, the solution to Eq. (1) can 
be regarded as being accurate only in the neighborhood of the peak 
x,,, = ut. One way to derive a diffusion equation without the limitation 
implied by the infinite propagation velocity is to replace Eq. (1) by the so- 
called telegrapher’s equation 

where T is a constant with the dimensions of time and u is a constant with 
the dimensions of velocity. This equation, however, corresponds to Eq. 
(1) with the parameter u set equal to 0, i.e., to a diffusion equation in the 
absence of a biasing field. This modified diffusion equation is known to 
have the property that the speed of propagation is finite rather than infinite 
(2 ,  3 ) .  However, such bias is an inherent part of chromatographic pro- 
cesses, corresponding to the effect of the field that drives the process. In 
this article we propose to examine a generalization of Eq. (2) which takes 
into account the bias while still retaining the advantage of predicting a 
finite propagation velocity. Such processes have apparently not been dis- 
cussed in the literature. The analysis will be based on random walks with 
two states (4) ,  which is the basis of a recent generalization of the notion 
of the persistent random walk (5). 

2. ANALYSIS 
For simplicity we restrict our discussion to the one-dimensional case 

which is the one of major interest in applications to chromatographic pro- 
cesses. The basic idea defining the generalized diffusion process is that it 
can be in one of two states, depending on whether it is moving in the 
positive or negative x directions. Thus, the process consists of an alternating 
sequence of times during which the random walk moves in one of the two 
directions. The time spent in any single sojourn (i.e., the time spent moving 
in one or the other direction after a reversal and before the following 
reversal) is assumed to be a random variable characterized by a probability 
which we denote by $ + ( t )  and $ - ( t ) ,  respectively, and 

Let us assume that the initial condition for the diffusion process is 
c(x,O) = 6 ( x )  and that the diffusion process takes place in an infinite 
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medium. Further, let f+(x,t) [f-(x,t)] be the concentration at x on the 
assumption that the particle has moved in the positive [negative] x direction 
for a time t. We will also need the functions 

similar definitions holding for motion in the negative x directions. 
Since our model is one in which there are two distinguishable states, in 

our model we define c+(x, t )  as the concentration at x at time t when the 
diffusing particle is moving in the positive x direction and c-(x,t)  for motion 
in the negative x direction. Because one cannot operationally distinguish 
between the two concentrations, we define the observable concentration 
at x at time t as 

C ( X , t )  = c + ( x , t )  + c - ( x , t )  (5) 

We will derive a partial differential equation for c(x, t )  that incorporates 
bias and therefore constitutes a generalization of Eq. (2). 

There are two ways in which asymmetry can enter the theory, the first 
being through a difference between the two functions f +  (x ,  t) and f - (x ,  t), 
i.e., f + ( x , t )  # f - ( - x , t ) ,  and the second is through the presumption that 
++(t)  Z +-(t) .  It is interesting to note that something very similar to these 
two possibilities occur in bacterial motion (6). In order to derive a partial 
differential equation for c(x , t )  valid for all t > 0, we will make the specific 
assumption that 

with f - ( x , t )  and +-(t) defined similarly in terms of u- and T-.  That is to 
say, motion in either direction is ballistic, and the sole source of random 
behavior comes from the sojourn times in the two states. An argument 
based on the central limit theorem suggests that provided that 

the Gaussian concentration profile calculated from the diffusion equation 
will be valid at long times but not necessarily in the transient regime. 
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282 MASOLIVER AND WEISS 

Let us denote the Fourier-Laplace transform of a generic function g(x,t)  
by g(w,s) so that 

It has been shown that the expression for t ( w , s )  can be written (5):  

With the simple choices for the relevant functions given in Eq. (6), we can 
evaluate all of the functions appearing in this last equation, thereby finding 

2sT+T- + 2(Tt + T - )  - ioT+T-(u+ + u-) 
t ( w , s )  = 2{s2T+T- + s (T+ + T - )  - w*u+u-T+T- 

- i w ( ~ + T +  + u - T - )  - ~ w T + T - ( u +  + U-)} 

in which we have used the notation 

1 1  u+ + u- 2 p  = (2 + k) (11) 
2 ?  2 A = - + - ,  V =  T+ T-  

For simplicity let us consider the case in which u+ = - u- = u or V = O, 
so that the velocities in either directions are equal and any bias in the 
motion results from a tendency of particles to move for longer periods in 
the positive rather than the negative direction. We can derive a partial 
differential equation for c(x,t)  from the transform in Eq. (10) by using a 
method discussed in Ref. 5 .  The result of this calculation is 

When T+ = T - ,  this reduces to the telegrapher’s equation whose form is 
shown in Eq. (2), since equality of the mean residence times is equivalent 
to setting p = 0. Thus, in this special case the bias simply adds a term 
proportional to dclax to the right-hand side, just as one does for the 
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diffusion equation. Later we show that the case in which u +  # u- can be 
reduced to the same form as Eq. (12) so that we are, in reality, finding a 
solution for the more general case even though a restriction applies on the 
present analysis. 

Equation (12) is always reducible to an unbiased telegrapher's equation 
by choosing a new dependent variable r ( x , t )  in place of c(x,t) by using 
the transformation 

The function r (x , t )  therefore satisfies 

a2r 1 ar a2r - + - = v2- 
at2 T I  at ax2 

in which the parameter T' is defined by 

m T'=- 
2 

Since c(x, t )  will be assumed to obey the initial conditions 

c(x,O) = coS(x), = 0 
at 

the function I'(x,t) must be found from the solution to Eq. (14) subject to 
the same set of initial conditions, i.e., T(x,O) = coS(x) and arlatl,,, = 0. 
The simplest way to solve Eq. (14) is to once again take its Fourier-Laplace 
transform, which can be expressed as 

Let T(x,s) denote the Laplace transform of T(x,  t ) ,  or correspondingly the 
inverse Fourier transform of Eq. (17). One readily finds this transform to 
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be 

Let f(t) be the inverse transform of the function 

which is found to equal (7) 

in which lo (x)  is a Bessel function of imaginary argument, and H ( x )  is the 
Heaviside step function, i.e., H ( x )  = 0 when x < 0, = 1 when x > 0 and 
H ( 0 )  = 1/2. The combination of Eqs. (18)-(20) shows that T ( x , t )  can be 
represented in terms of f(t) as 

x [& -1 + exp (-+) 8 (t - !)), 

where 6(x) is a Dirac delta function. The term containing the delta function 
gives the contribution from the ballistic motion of those particles that have 
always moved in the same direction. The delta function contribute to T ( x , t )  
disappears rapidly compared to the contribution from the first set of terms. 
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Because of the Heaviside step function in Eq. (21), it is evident that c(x,t)  
must vanish for all x that satisfy x2  > (ut)* .  This is to be contrasted to the 
solution of the diffusion equation which is nonnegative for all t > 0. In 
Fig. 1 we show some typical concentration profiles calculated from Eq. 
(13), omitting the delta function term. The increasing asymmetry of these 
concentration profiles as the time increases is evident from the figure, as 
well the sharp cutoffs at the endpoints x = 2vt .  We have not included the 
delta function peaks at the endpoints. 

At sufficiently long times c(x,  t )  will indeed approach the shifted Gaussian 
form predicted by the solution to a diffusion equation. This is evident from 
the behavior of cI(o,s) in the limit s-0 where the term proportional to s2 
in the denominator is negligible in comparison to s and the term in s in 

0 

X 

. 
\ 
\ 
\ 
\ 

FIG. 1 .  Curves of the concentration profile c(x,t) plotted from Eq. (13) for the values co = 1, 
u = 1, T, = 8, T -  = 2 for increasing values of time: (-) t = 1; (- - -) t = 3; (- - -) 
t = 5. The delta functions at the endpoints are not included in the figure. At very short times 
the concentration profiles differ considerably from the shifted Gaussian expected on the basis 

of a biased diffusion equation. 
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the numerator can be neglected with respect to 2A. In this regime we find 

2XcO 
t(w,s> = 

2hs + 2ipw + u2o2 

whose inverse is readily found by first inverting the Laplace transform 
followed by an inversion of the Fourier transform. The result is 

which is the desired Gaussian. One way of assessing the time range over 
which one must correct the diffusion approximation is to examine the time- 
dependence of the average displacement at time t, which is defined by 

When the peak is a Gaussian, as would be found for a diffusion model, 
( x ( t ) )  is proportional to t for all values of the time, as one indeed finds 
from the approximate expression in Eq. (23). On returning to Eq. (10) 
and calculating the derivative indicated in Eq. (24), one finds, by a Taub- 
erian argument for Laplace transforms (d), that the first two terms in the 
expansion of the long time behavior of ( x ( t ) )  are 

which suggests that the time scale for which the diffusion approximation 
is useful is specified by t S A - '  or 

(++ + +) ; * 1 

To this point we have examined the situation in which the velocities are 
equal and opposite for the two states but the average sojourn times are 
unequal. When the velocities as well as the average residence times are 
also allowed to differ, we get a slightly more complicated form from e(w,s) 
as indicated by the presence of a term proportional to os in the denominator 
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of Eq. (10). This transform is also equivalent to a partia 
tion for c(x,t) which is 

a2c ac a2c a2c IC - + 2h- + 2V- = E 2 -  - 2p - 
at2 at axat ax2 ax 

differential equa- 

where we have set Z2 = - u + u - .  This equation can be reduced in form to 
the earlier shifted telegrapher’s equation in Eq. (14) by eliminating the 
mixed derivative through the introduction of a new running coordinate, 5, 
defined as 

which transforms Eq. (27) into 

a*c ac aC2 ac 
at2 at at at - + 2h - = (V2 + a’) 7 - 2(p - hV) - 

This equation reduces to the earlier shifted telegrapher’s equation in Eq. 
(12) when u+ is set equal to - u - .  Since when t = 0 , t  = x ,  it follows that 
Eq. (29) is to be solved subject to the initial conditions 

Our analysis of Eq. (12) can be repeated with the variable x in that equation 
replaced by 6 in Eq. (29). We can conclude from our earlier analysis that 
the concentration profiles have compact support, being identically equal 
to zero for t2 > (ut)2. A second conclusion that results from our earlier 
analysis is that the concentration profile c([,t) is asymptotically a Gaussian 
centered at the moving point x = Vt. In the class of models represented 
by the assumptions in Eq. (6), the simpler diffusion approach yields sat- 
isfactory results in the neighborhood of the peak but does not reproduce 
the behavior in the tails very well. 

A natural generalization of all our analysis allows for more general 
forms of the functions h+(x,t) and h-(x,t) than those given in Eq. (6). We 
mention some of the features expected in such models, without giving 
any details of the analysis. When the two moments J;dtfl,x’h(x,t)dx and 
J: ,dxJ;th(x, t)dt are finite, the asymptotic concentration profile will be a 
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288 MASOLIVER AND WEISS 

Gaussian, as one finds from an argument based on the analysis of Eq. (9) 
in the limits s,o-*O. In such cases the generalized diffusion equation may 
become too complicated to form a useful starting point for any analysis. 
For example, if one changes the assumption of ballistic motion to biased 
diffusion so that the f (x , t )  in Eq. (6) are replaced by 

(31) 
f + ( x , t )  = ( 4 ~ D t ) - ' / ~  exp [ - (x  - ~ t ) ~ / ( 4 D t ) ]  

f - ( x , t )  = ( 4 ~ D t ) - l / ~  exp [ - ( x  + ~ t ) ~ / ( 4 D t ) ]  

the sojourn time densities remaining of negative exponential form as in 
Eq. (6) with T ,  = T - ,  it is possible to derive a generalized diffusion 
equation of the form 

(32) 
a2c 2 ac 

However, the analysis of such equations is obviously quite complicated. It 
is clear that since the expressions for f + ( x , t )  and f - ( x , t )  given in Eq. (31) 
allow for an infinite speed of signal propagation, solutions to Eq. (32) will 
have this property as well. Thus we can attribute the fact that the solution 
to Eq. (12) has compact support to the assumption of ballistic motion 
contained in Eq. (6). 

As a final comment, we note that if either of the moments 
J$dtJ?,x2h(x,t)dx or J?mdxJ$th(x,t)dt is infinite, one can expect that the 
peaks in the concentration profile will show enhanced asymmetry and will 
not approach a Gaussian shape asymptotically, much as is suggested in 
Refs. 9 and 10. 

Acknowledgments 
J.M. gratefully acknowledges partial support by the Comision Intermin- 

isterial de Ciencia y Tecnologia (CICYT) under contract PS87-0046 and 
by the Societat Catalana de Fisica (Institut Estudis Catalans). G.H.W. 
thanks the Department of Fundamental Physics, University of Barcelona, 
for its very generous hospitality during the time that this work was in 
progress. 

REFERENCES 
1. J .  C. Giddings, Dynamics of Chromatography. Part I. Principles and Theory, Dekker, 

2. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Vol. 1 ,  McGraw-Hill, 
New York, 1965. 

New York, 1953. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
4
4
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



TRANSPORT EQUATIONS IN CHROMATOGRAPHY 289 

3. D. D. Joseph and G. Preziosi, “Heat Waves,” Rev. Mod. Phys., 61, 41-73 (1989). 
4. G. H. Weiss, “The Two-State Random Walk,” J. Stat. Phys., 15, 157-165 (1976). 
5. .I. Masoliver, K. Lindenberg, and G. H. Weiss, “A Continuous-Time Generalization of 

the Persistent Random Walk,” Physica A, pp. 891-898 (1989). 
6. R. Nossal, “Stochastic Aspects of Biological Locomotion,” J. Stat. Phys., 30, 391-400 

(1983). 
7. G.  E. Roberts and H. Kaufman, Table of Laplace Transforms, Saunders, Philadelphia, 

1966. 
8. G. Doetsch, Theorie und Anwendung der Laplace-Transformation, Dover (reprint), New 

York, 1943. 
9. G. H. Weiss, “Chromatographic Kinetics and the Phenomenon of Tailing,” Sep. Sci. 

Technol., 17, 1101-1115 (1982). 
10. G. H. Weiss, “On a Generalized Transport for Chromatographic Systems,’’ in Transport 

and Reluxation in Random Marerials (J. Klafter, R.  J. Rubin, and M. F. Shlesinger, eds.), 
World Scientific, Singapore, 1986, pp. 394-406. 

Received by editor March 13, 1990 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
4
4
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1


